Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2 Advance Micro Foundry Pte Ltd, Singapore 117685, Singapore
3 Peng Cheng Laboratory, Shenzhen 518000, China
Germanium-on-silicon (Ge-on-Si) avalanche photodiodes (APDs) are widely used in near-infrared detection, laser ranging, free space communication, quantum communication, and other fields. However, the existence of lattice defects at the Ge/Si interface causes a high dark current in the Ge-on-Si APD, degrading the device sensitivity and also increasing energy consumption in integrated circuits. In this work, we propose a novel surface illuminated Ge-on-Si APD architecture with three terminals. Besides two electrodes on Si substrates, a third electrode is designed for Ge to regulate the control current and bandwidth, achieving multiple outputs of a single device and reducing the dark current of the device. When the voltage on Ge is -27.5 V, the proposed device achieves a dark current of 100 nA, responsivity of 9.97 A/W at -40 dBm input laser power at 1550 nm, and optimal bandwidth of 142 MHz. The low dark current and improved responsivity can meet the requirements of autonomous driving and other applications demanding weak light detection.
Photonics Research
2022, 10(8): 1956
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
3 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4 Advanced Micro Foundry Pte Ltd., Singapore 117685, Singapore
5 Peng Cheng Laboratory, Shenzhen 518000, China
To optimize the dark current characteristic and detection efficiency of the 1550 nm weak light signal at room temperature, this work proposes a Ge-on-Si avalanche photodiode (APD) in Geiger mode, which could operate at 300 K. This lateral separate absorption charge multiplication APD shows a low breakdown voltage (Vbr) in Geiger mode of -7.42 V and low dark current of 0.096 nA at unity gain voltage (VGain=1 = -7.03 V). Combined with an RF amplifier module and counter, the detection system demonstrates a low dark count rate (DCR) of 1.1×106 counts per second and high detection efficiency η of 7.8% for 1550 nm weak coherent pulse detection at 300 K. The APD reported in this work weakens the dependence of the weak optical signal recognition on the low environment temperature and makes single-chip integration of the single-photon level detection system possible.
avalanche photodiode optical detection optical interconnection 
Chinese Optics Letters
2022, 20(6): 062501
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2 Peng Cheng Laboratory, Shenzhen 518000, China
3 Advance Micro Foundry Pte. Ltd., Singapore 117685, Singapore
Optical phased array (OPA) technology is considered a promising solution for solid-state beam steering to supersede the traditional mechanical beam steering. As a key component of the LIDAR system for long-range detection, OPAs featuring a wide steering angle and high resolution without beam aliasing are highly desired. However, a wide steering range requires a waveguide pitch less than half of the wavelength, which is easily subjected to cross talk. Besides, high resolution requires a large aperture, and it is normally achieved by a high count number of waveguides, which complicates the control system. To solve the mentioned issues, we design two high-performance 128-channel OPAs fabricated on a multilayered SiN-on-SOI platform. Attributed to the nonuniform antenna pitch, only 128 waveguides are used to achieve a 4 mm wide aperture. Besides, by virtue of innovative dual-level silicon nitride (Si3N4) waveguide grating antennas, the fishbone antenna OPA achieves a 100°×19.4° field of view (FOV) with divergence of 0.021°×0.029°, and the chain antenna OPA realizes a 140°×19.23° FOV with divergence of 0.021°×0.1°. To our best knowledge, 140° is the widest lateral steering range in two-dimensional OPA, and 0.029° is the smallest longitudinal divergence. Finally, we embed the OPA into a frequency-modulated continuous-wave system to achieve 100 m distance measurement. The reflected signal from 100 m distance is well detected with 26 dBm input transmitter power, which proves that OPA serves as a promising candidate for transceiving optical signal in a LIDAR system.
Photonics Research
2021, 9(12): 12002511
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Opto-Electronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
The continuous-time quantum walk (CTQW) is the quantum analogue of the continuous-time classical walk and is widely used in universal quantum computations. Here, taking the advantages of the waveguide arrays, we implement large-scale CTQWs on chips. We couple the single-photon source into the middle port of the waveguide arrays and measure the emergent photon number distributions by utilizing the fiber coupling platform. Subsequently, we simulate the photon number distributions of the waveguide arrays by considering the boundary conditions. The boundary conditions are quite necessary in solving the problems of quantum mazes.
270.5570 Quantum detectors 270.0270 Quantum optics 
Chinese Optics Letters
2019, 17(5): 052701

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!